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Abstract

For potential fusion energy applications, considerable fabrication efforts have been directed to obtaining transverse

thermal conductivity (Keff ) values in excess of 30 W/mK (unirradiated) in the 800–1000 �C temperature range for 2D-

SiCf /SiC composites. To gain insight into the factors affecting Keff , at PNNL we have tested three different analytic

models for predicting Keff in terms of constituent (fiber, matrix and interphase) properties. The tested models were: the

Hasselman–Johnson �2-Cylinder� model, which examines the effects of fiber–matrix (f/m) thermal barriers; the Mark-
worth �3-Cylinder�model, which specifically examines the effects of interphase thickness and thermal conductivity; and a
newly developed anisotropic �3-Square� model, which examines the potential effect of introducing a fiber coating with
anisotropic properties to enhance (or diminish) f/m thermal coupling. The first two models are effective medium models,

while the third model is a simple combination of parallel and series conductances. Model predictions suggest specific

designs and/or development efforts directed to optimize the overall thermal transport performance of 2D-SiCf /SiC.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Many potential applications of continuous fiber-

reinforced ceramic composites (CFCC) require relatively

high thermal conductivity. This study will focus on the

conditions for optimizing the transverse thermal con-

ductivity (Keff ) of a CFCC, consisting of a silicon carbide
(SiC) matrix reinforced with SiC-type fibers (SiCf), for

potential fusion reactor applications. Usually the SiC

matrix is made by using the chemical vapor infiltration

(CVI) process, but polymer infiltration and pyrolysis

(PIP) and hybrid CVI–PIP processes also are being de-

veloped [1].

Recently, the design goal for a fusion reactor SiCf /

SiC first wall was set at 15 W/mK at 800 �C in service

[2]. This translates roughly into a goal for unirradiated

SiCf /SiC to have Keff ¼ 38 W/mK at 800 �C, which is a
value about three times that reported for even the best,

currently available commercial 2D-SiCf /SiC [3]. To at-

tain a high Keff , both the fiber and matrix components
will have to have relatively high thermal conductivity

values, Kf and Km, respectively. The fiber type likely will

be highly crystallized, stoichiometric SiC with Kf > Km.

Moreover, good fiber–matrix (f/m) thermal coupling will

be required.

To investigate the separate component contributions

to Keff , three different analytic models were examined,
namely: (1) the Hasselman–Johnson (H–J) �2-Cylinder�
model [4], (2) the Markworth �3-Cylinder� model [5], and
(3) a newly developed �3-Square� model with anisotropic
thermal conduction. The validity, limiting conditions

and appropriate circumstances for using each model will

be discussed. To test the models, predictions are com-

pared to experimental measurements of Keff for a com-
mercial SiCf /SiC system and presented in a companion

paper [6]. Model descriptions follow:

1.1. The Hasselman–Johnson model

TheH–Jmodel is an effectivemedium (EM)model that

describes steady-state heat transport in the transverse
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direction in a composite with dispersed, uniaxially aligned

fibers. It predicts Keff in terms of Kf and Km, the fiber
diameter, the average fiber volume fraction (f ) and the
effects of f/m thermal barriers. Predictions of Keff for such
a composite have been shown to be in close agreement

(6 5%) with detailed finite element model predictions for

f -values up to f 6 0:5 [7].
In the EM approach, attention is focused on a single

fiber aligned coaxially within a cylindrical matrix which

itself is contained within an effectively homogeneous

EM, as schematically depicted in Fig. 1(a). The EM

stretches to infinity and represents the average effect of

all the surrounding fibers and matrix material outside

the two inner cylinders. The inner fiber and matrix cyl-

inders have cross-sectional radii a and b, respectively.
The magnitude of the radius b is set by the requirement
that the fiber volume fraction f ¼ a2=b2. A temperature

gradient (DT ), which is uniform throughout the EM, is

directed along the positive x-direction. Because of the
cylindrical geometry, the temperature distributions in

each region i (i ¼ 1, 2, 3 or eff, m, f, respectively) are

assumed to have the general form:

Ti ¼ Ai þ ðBi=q þ CiqÞ cosðhÞ; ð1Þ

where q and h are the usual cylindrical polar coordi-

nates. The values for the constants Ai;Bi and Ci are

obtained by applying the boundary conditions that the

normal component of heat flux KiðdTi=dqnÞn be contin-
uous across each interface at q ¼ a or b, and that

Tm ¼ Teff at the matrix–EM interface q ¼ b. At the f/m
interface q ¼ a, a finite temperature step Tf � Tm ¼
�Kf=hðdTf=dqÞn is introduced. The f/m interface con-

ductance is represented by �h� and has units of W/m2 K.

The goal is to derive an expression for Keff in terms of
Kf , Km, a, f , and h.

Since the temperature scale is arbitrary, A3 can be set
to zero; and since the temperature must be finite at the

origin, B3 ¼ 0. By symmetry about the mid-plane per-

pendicular to the temperature gradient, A2 and A1 must
also be zero. Finally, for Teff to vary uniformly along the
temperature gradient within the EM region, B1 ¼ 0 and

C1 ¼ DT . Applying the boundary conditions at both

q ¼ a and b, one obtains a system of four coupled

equations containing three unknown terms, B2;C2 and

C3:

C2 � B2=a2 ¼ rC3; ð2aÞ

C2 þ B2=a2 ¼ ðxþ 1ÞC3; ð2bÞ

C2 � B2=b2 ¼ RDT ; ð2cÞ

C2 þ B2=b2 ¼ DT ; ð2dÞ

where the substitutions r ¼ Kf=Km, R ¼ Keff=Km and

x ¼ Kf=ah have been used to simplify the algebra. By

adding or subtracting Eqs. (2c) and (2d), separate so-

lutions for C2 and B2 can be derived in terms of b2, R
and DT . Then by substituting the solutions for C2 and B2
into both Eqs. (2a) and (2b), two independent expres-

sions for C3 are obtained. Setting these two expressions
equal to each other and using the requirement that

f ¼ a2=b2, it is straightforward to solve for R obtaining:

R ¼ fðr þ xþ 1Þ þ f ðr � x� 1Þg
=fðr þ xþ 1Þ � f ðr � x� 1Þg: ð3Þ

Eq. (3) is the same equation derived by Hasselman

and Johnson by a similar method. To simplify the

analysis, we have normalized both Keff and Kf by di-

viding by Km and we have introduced the quantity x,
which is the reciprocal of the Biot number or the surface

heat transfer coefficient. Note that the EM method

works because the four coupled equations with three

Fig. 1. Schematic cross-sectional views of fiber/interface/matrix geometry for (a) H–J 2-Cylinder model, (b) the Markworth 3-Cylinder

model, and (c) the anisotropic 3-Square model.
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unknowns overspecify the situation, which permits the

analytic solution for R (or Keff ).

In Fig. 2(a) and (b), the relative thermal conductivity

R is plotted as a function of �h� for fiber volume fractions
f ¼ 0:1, 0.4, 0.5 and 0.6 for two different f/m conduc-

tivity ratios, r ¼ 5 and 0.2. To easily compare the effects

of r and h on Keff for these examples, the same fiber

radius and matrix thermal conductivity (a ¼ 5 lm and

Km ¼ 20 W/mK, respectively) were assigned. The fol-

lowing observations are made:

(1) As f ! 0 (e.g., f ¼ 0:1), R ! 1 for all values of h
(and r).

(2) For r > 1, R is sensitively dependent on h and there
is a common crossover point at R ¼ 1 for all values

of f when x ¼ r � 1.

(3) For r < 1, R is relatively insensitive to the values of

h, there is no crossover point and R < 1 for all values

of f and h.
(4) For h ! 0 (complete f/m thermal decoupling), R as-

ymptotically approaches a minimum value indepen-

dently of r given by Rmin ¼ ð1� f Þ=ð1þ f Þ.
(5) For h ! 1 (perfect f/m thermal coupling), R as-

ymptotically approaches a maximum value which

is given by Rmax ¼ ½ð1� f Þ þ rð1þ f Þ�=½ð1þ f Þþ
rð1� f Þ�.

Fig. 2. Comparison of analytic solutions for the H–J equation (3), R versus h for fiber volume fractions up to f ¼ 0:6 for Kf=Km ratios
(a) r ¼ 5:0 and (b) r ¼ 0:2. For each case, the fiber radius a ¼ 5:0 lm and Km ¼ 20 W/mK.
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(6) For (r < 1), as r increases the transition region (the
region where R exhibits its maximum rate of change)

occurs for lower (higher) values of h.

Clearly, for dispersed parallel fibers in a matrix, Keff
is controlled primarily by the continuous matrix phase

thermal conductivity, Km. To attain a Keff -value greater
than Km, both relatively high Kf - and h-values are nec-
essary. Even when r ¼ 100, by observation (5) for a

typical SiCf /SiC fiber packing fraction f ¼ 0:4, Rmax
would still be <2.3 for perfect f/m thermal coupling. At

the other extreme, when h ! 0 the fibers become ther-

mally decoupled from the matrix and Rmin is represen-
tative of the limiting case for dispersed cylindrical pores

with a volume fraction �f �. This latter point has impor-
tant consequences for SiCf /SiC designed to have a high

Keff , i.e., for a composite made from matrix and fibers

with individually high K-values as well as with originally
high conductance interfaces. For this example, degra-

dation of the interface alone (h ! 0), due possibly to

mechanical, thermal or environmental stress, is sufficient

for Keff=Km to be reduced from a maximum value of 2.3

down to a minimum value of 0.42, an 82% reduction!

Independent degradation of Km could further reduce

Keff .

1.2. The Markworth model

The Markworth model also is an EM model in which

the f/m interface shown in Fig. 1(a) is replaced by a thin

fiber coating of thickness (t) and thermal conductivity
(Kc), as shown in Fig. 1(b) [5]. The temperature distri-
bution given by Eq. (1) again is assumed; and the

boundary conditions now are applied between four

separate regions rather than three, where the outer re-

gion again is the EM with temperature gradient DT and
an effective thermal conductivity Keff . There no longer is
a temperature step at the f/m interface, but Ti and
KiðdT=dqÞn are continuous at the three interfaces be-
tween the four regions. The result is a set of six coupled

equations with five unknown coefficients. Again, the

overspecification of the unknown coefficients permits a

unique solution for R (or Keff ), specifically:

R3cyl ¼ f ðKm;Kc;Kf ; f ; t; aÞ=gðKm;Kc;Kf ; f ; t; aÞ; ð4Þ

where R3cyl ¼ Keff=Km for the Markworth 1 or 3-Cylin-

der model and the functions f and g are given by

f ¼ 2cðr þ cÞ½1þ f ð1þ uÞ2� þ ½ðc� 1Þ þ f ð1þ uÞ2

� ðcþ 1Þ�½ðr � cÞ=ð1þ uÞ2 � ðr þ cÞ�; ð5Þ

g ¼ 2cðr þ cÞ½1� f ð1þ uÞ2� þ ½ðc� 1Þ � f ð1þ uÞ2

� ðcþ 1Þ�½ðr � cÞ=ð1þ uÞ2 � ðr þ cÞ�: ð6Þ

Eqs. (5) and (6) are normalized by setting u ¼ t=a and
c ¼ Kc=Km, and r ¼ Kf=Km as before. If c is set ¼ 0

(equivalent to Kc ¼ 0 for perfectly insulated fibers), Eq.

(4) reduces to the limit:

R3cylðminÞ ¼ ½1� f ð1þ uÞ2�=½1þ f ð1þ uÞ2�; ð7Þ

which is equivalent to the limiting condition for Rmin
given by observation (4) for the H–J model. If u is

set ¼ 0 (equivalent to no coating), an upper limit for

R3cyl becomes:

R3cylðno coatÞ ¼ ½ð1� f Þ þ rð1þ f Þ�=½ð1þ f Þ þ rð1� f Þ�;
ð8Þ

which is the same as the limiting condition given by

observation (5) when h ! 1 (perfect f/m thermal cou-

pling) for the H–J model. However, Eq. (8) does not

represent an upper bound for R3cyl. For a high value of c
(or Kc), by Eq. (4) R3cyl continuously increases as t in-
creases.

In Fig. 3(a), R3cyl is plotted versus an equivalent

conductance ðheq ¼ Kc=tÞ so that solutions for the 3-

Cylinder model can easily be compared to solutions for

the H–J model for the same K�
f -, K

�
m- and a-values. For

the case of Kf ¼ 100 W/mK and Km ¼ 20 W/mK, the

curves for equivalent f -values have similar S-shapes

with a crossover where R ¼ 1:0 for all values of �f �.
However, R3cyl > R for heq > 107 W/m2 K. This is be-

cause a fiber coating with a high Kc-value relative to Km
begins to contribute to Keff . This effect becomes more

pronounced as the coating thickness increases, as is

shown in Fig. 3(b) for a case where f ¼ 0:6. For in-
stance, if Kc ¼ 1000 W/mK and t=a ¼ 0:14 (e.g., a 14-
lm diameter fiber with a coating 1-lm thick) R3cyl  4:7,
a value more than twice as much as the upper limit when

the coating is infinitely thin. Obviously, for cases where

a fiber has a relatively thick coating with a high Kc, the
coating itself can contribute significantly to Keff . In
contrast, if the fiber coating is insulating (e.g., a layer of

amorphous SiO2) R3cyl rapidly becomes <1.0 as t in-
creases, and approaches the lower limit set by Eq. (7). As

an example, if Kf ¼ 100 W/mK, Km ¼ 20 W/mK,

f ¼ 0:6 and Kc ¼ 0:1 W/mK, R3cyl ! 0:25 for t=a >
0:04.

1.3. The anisotropic 3-Square model

Both the H–J 2-Cylinder and the Markworth 3-Cyl-

inder models assume that all the constituents are trans-

versely isotropic. However, commonly used pyrolytic

carbon (PyC) fiber coatings generally have a turbostratic

texture in which the carbon a-axis (the high thermal

1 In Ref. [5], errors appear in Eqs. (10) and (14), the

expressions for R and g. In Eq. (14), the last two minus signs

should be replaced by multiplication signs; and in Eq. (14), the

term ½1þ kð1þ lÞ2� should be ½1� kð1þ lÞ2�.
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conductivity direction for graphite) is preferentially

aligned parallel and the low-conductivity c-axis per-
pendicular to the fiber surface [8]. For this reason, a

simple model was developed to examine the effect of

anisotropic thermal conduction in the fiber coating. In

this model, rather than concentric cylinders the config-

uration consists of three concentric bars with square

cross-sections representing the fiber, fiber coating and

matrix phases, as schematically depicted in Fig. 1(c). The

bars are subdivided into symmetric regions 1, 2 and 3

with respect to their common central plane. For sim-

plicity, no lateral heat conduction is allowed between the

regions. Then Keff for this system becomes a combina-

tion of series and parallel conductances for each of the

three regions:

Keff ¼ F1ðKm; b; a; tÞ þ F2ðKm;Kc0 ; b; a; tÞ
þ F3ðKm;Kc;Kf ; b; a; tÞ; ð9Þ

where the conductance contribution from each region is

given explicitly by

F1ðKm; b; a; tÞ ¼ Km½1� ðaþ tÞ=b�; ð9aÞ

F2ðKm;Kc0 ; b; a; tÞ
¼ Km½ðb� aÞ=t � 1þ ðKm=Kc0 Þðt þ aÞ=t��1; ð9bÞ

Fig. 3. Comparison of analytic solutions for the Markworth model equation (4) for Kf=Km ¼ 5:0, Km ¼ 20 W/mK and a ¼ 5:0 lm. (a)
R versus heq ¼ Kc=t for fiber volume fractions up to f ¼ 0:6 and t ¼ 0:2 lm, and (b) R versus t=a for Kc ¼ 0:1 up to 1000 W/mK.
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F3ðKm;Kc;Kf ; b; a; tÞ
¼ Km½ðb� tÞ=a� 1þ ðKm=KcÞðt=aÞ þ Km=Kf ��1:

ð9cÞ

In Eqs. (9a)–(9c), the contributions from regions 1, 2

and 3 contain conductances for the matrix only; matrix

and fiber coating in series; and matrix, fiber coating and

fiber in series, respectively.

Because the thermal conductivity of graphite exhibits

an extremely wide range between maximum and mini-

mum values (2000 and 10 W/mK parallel and normal to

the basal c-planes, respectively), even a small component

of in-plane conductivity can significantly affect Kc. As an

example, predictions for Keff as a function of t=a are

presented in Fig. 4(a) and (b) for the 3-Square model

when the coating has two different types of texture. For

this example, values of KcðaÞ and KcðcÞ were selected to be

500 and 2 W/mK, respectively. Also, for ease of com-

parison to the 3-Cylinder model example (Fig. 3(b) the

same values for Km and Kf , equivalent fiber radius a, and
f ¼ a2=b2 ¼ 0:6 were selected for the 3-Square model

example.

The three lower curves in each of Fig. 4(a) and (b)

represent the separate contributions of the three parallel

conduction pathways F1, F2 and F3 while the upper solid

Fig. 4. Comparison of analytic solutions for the anisotropic 3-Square model equation (9) for Kf=Km ¼ 5:0, Km ¼ 20 W/mK, a ¼ 5:0

lm and f ¼ 0:6 when (a) Kc0 ¼ KcðaÞ ¼ 500 W/mK and Kc ¼ KcðcÞ ¼ 2 W/mK, or when (b) Kc0 ¼ KcðcÞ ¼ 2 W/mK and Kc ¼ KcðaÞ ¼ 500

W/mK.
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curve (the algebraic sum of the three lower curves)

represents Keff . In Fig. 4(a), the coating texture is such
that heat conduction within the coating along the edges

of the fiber (region 2) is enhanced by the alignment of

the high-conductivity PyC a-axis parallel to DT . Mean-
while, in region 3 the alignment of the low-conductivity

c-axis parallel to DT tends to insulate the fiber from the

matrix. At the other extreme, in Fig. 4(b) the coating

texture is such that alignment of the low-conductivity c-
axis is preferentially parallel to DT in region 2, which

reduces heat conduction in the coating along the edges

of the fiber. Then, in region 3 the high-conductivity a-
axis is parallel to DT so that the fiber is thermally well

coupled to the matrix.

In Fig. 4(a), Keff exhibits a minimum value because

the f/m coupling curve (F3) decreases and the fiber

coating shorting curve (F2) increases as t increases. For
this selected case, the minimum occurs for t=a ¼ 0:085.
Then, for a fiber with equivalent diameter 10 lm,
t > 400 nm. The matrix only contribution (F1) is rela-

tively small and decreases slightly with increasing t
simply because of a decrease in the cross-sectional area

for region 1. Obviously, the F1 contribution would in-

crease somewhat for values of f < 0:6.
In contrast, when the fiber is effectively coupled to

the matrix through the F3 term, Keff continuously in-
creases with increasing t and the fiber shorting contri-

bution F2 is nearly non-existent, as depicted in Fig. 4(b).

For this case, the coating texture is such that little heat

conduction occurs in the coating along the edges of the

fiber parallel to DT because of the low value selected for

KcðcÞ. However, the fiber is thermally well coupled to the
matrix because of the high value selected for KcðaÞ. Also,
for this example with f ¼ 0:6 the region 3 cross-section
is relatively high compared to either of the cross-sections

for regions 1 or 2.

2. Discussion

The H–J 2-Cylinder and the Markworth 3-Cylinder

models are similar EM models whose thermal transport

predictions depend upon the composite constituent

(fiber, fiber coating, and matrix) dimensions, thermal

properties and their arrangement as well as the actual

character of the different interfaces between these con-

stituents. Similar predictions of R are obtained for

similar values of h or equivalent heq ¼ Kc=t for the H–J
and Markworth models, respectively. The only differ-

ence is that the Markworth model predicts higher values

for R when heq > 107 W/m2 K because then the coating

also begins to contribute to Keff . Therefore, to describe

well-bonded SiCf /SiC systems with high values of heq the
Markworth model is preferred, while the H–J model is

preferred when debonding and/or numerous f/m gas

gaps occur which dominate the interfacial conductance

and result in relatively low h-values.

Percolation effects through direct fiber–fiber contacts

and through the inner-connected PyC coatings likely will

enhance Keff . Such effects will become more important as
the number of contacts and inner-connections increase

either as the average �f � increases or as the fiber packing
within individual tows increases locally, as observed for

most 2D-SiCf /SiC systems made from woven fabric

layers. Also, Keff will increase as the Kc-values increase,
especially if the coating thickness also increases. Never-

theless, relative changes in predicted Keff -values should
be little affected by moderate distortions in the theory

due to fiber packing non-uniformity or percolation

effects.

Constituent properties, Kf , Km, Kc (or h), sometimes
can be measured independently in a simulated system.

However, they may not be representative of the quan-

tities as they exist in an actual composite because the

composite processing conditions are difficult to repro-

duce. A better way to estimate the individual constituent

properties is to use either the H–J or the Markworth

models to estimate constituent quantities from measured

values of Keff and structural data. To extract values of

Km and Kc (or h) from models, accurate Keff data must be
obtained as a function of other variables, e.g., fiber ra-

dius and volume content, and coating thickness. If the

temperature dependence of Km, Kc (or h) is known or can
reliably be estimated, measuring Keff as a function of

temperature also is a useful strategy. Furthermore, if

Keff for composites exposed to irradiation or other

treatments can be modeled, a detailed analysis of de-

gradation mechanisms may be possible by separately

estimating the degradation effects for the individual

constituents.

In the H–J model, Keff can be affected by the size of
the fibers (or particulate) through the Kf=ah term. For
instance, attempts have been made to improve Keff by
adding high thermal conductivity diamond or SiC par-

ticulate to cordierite or aluminum substrates, at the

same time toughening or strengthening these substrates.

In these cases, the h-values were quite high (h > 107 W/

m2 K). However, this strategy failed due to the small

sizes of the diamond or SiC particulate used. Rather

than making a contribution to Keff , the smaller partic-

ulates acted more like insulating voids because of a size

effect where a small a-value offsets the benefit of a large

h-value. A size-effect could reduce Keff for a composite

reinforced by SiC fiber with a high Kf , but also a small

diameter. The H–J model is particularly appropriate to

analyze this situation for most cases.

Finally, the anisotropic 3-Square model suggests a

design strategy that may further enhance Keff for com-
posites with PyC fiber coatings. To take advantage of a

fiber with a high Kf -value, the fiber must be thermally

well coupled to the matrix. To do this, perhaps the
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texture of a PyC coating can be controlled to better

provide such coupling. The texture would need to pref-

erentially align the high-conductivity PyC a-axis normal

to the fiber surface, not parallel to the surface as is

typically observed [8]. Also, the PyC coating possibly

could be further graphitized to enhance its Kc-value.
However, this latter strategy would work only if the

coating texture could also be controlled, or at least

maintained isotropic.

3. Summary

1. The H–J 2-Cylinder and the Markworth 3-Cylinder

models are useful for designing 2D-woven SiCf /SiC

composites with a high Keff -value or for analyzing

Keff to obtain individual constituent Km;Kc (or h) val-
ues.

2. For composite with debonds or delaminations, the

H–J model is preferred for analysis. For compos-

ite with a uniform fiber coating and with well-

bonded f/c/m interfaces, the Markworth model is

preferred.

3. To achieve high Keff , SiCf /SiC composite must first

have a high Km-value, then also a high Kf -value with

high h or heq-values.
4. The anisotropic nature of Kc for a PyC fiber coating

may be utilized to improve (or degrade) heq, and thus
improve or degrade the overall composite Keff .

5. Even for a composite with well-bonded f/m inter-

faces, a size effect may reduce Keff if the fibers have

too small a diameter.
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